Tailings Facility Risk Assessment and Risk Management

Jack Caldwell, Robertson Geoconsultants
Colleen Crystal, GeoLogic Consultants

Tailings and Mine Waste 2017
The TSF

- Buritica Mine
- Columbia
- Continental Gold
The Valley
Final Layout
Foundation Soils
Cross Section
Channel
Natural Rip Rap
Risk Assessment Objectives

• Comply with developing standards
• Expand understanding of facility
• Provide a basis for engineering judgment
• Compile Risk Registers
• Provide a basis for Risk Management
Risk Periods

- During Design
- Construction
- Operation
- Closure
- Post Closure
Fault Tree

These Types of Hazards could cause failure:

- Natural Factors
- Mining-related factors
- TSF Performance
- Human Factors
Fish Bone Diagram: Channel Flooding

- Excess Flow
 - High Precipitation
 - Wet Soils
- Excess Debris in Flow
 - Fire
 - Failed Debris Dam
- Increased Runoff
 - Increase housing and paving
- Channel Impedance
 - Hillside Blockage
Bow Tie: Channel Flooding

- **Hazard**
 - High Precipitation
 - Lots of Entrained Debris
 - Channel Impeded by Hillside Rock Fall

- **Consequence**
 - Damage Access Road
 - Erode Toe Buttress
 - Expose Tailings
 - Tailings in Flood Waters
Event Tree: Slope Stability

- Channel Flow / Flujo del Canal
 - Short / Corto
 - Long / Prolongado
 - Small Rise / Incremento Pequeño
 - Big Rise / Incremento Considerable
 - Some Water / Algo de Agua
 - No Pressure / Sin Presión
 - Saturated / Saturado
 - No Impact / Sin Impacto
 - Reduced FOS / FOS Reducido
 - >10
 - <10
 - Impact of Channel Flooding on TSF Stability / Impacto de la Inundación de Canales con la Estabilidad del TSF
The Most Bothersome Hazards

• Natural Hazards
 • Big earthquakes
 • Flood flows in channels

• Mining Hazards
 • Shortage of waste rock for berms
 • Filter pressed tailings too wet

• TSF Performance
 • Slope Stability
 • Erosion
 • Foundation Deformation

• Human Factors
 • Management
Consequences

• Natural Hazards
 • Big earthquakes: **Slope deformation**
 • Flood flows in channels: **Toe erosion**

• Mining Hazards
 • Shortage of waste rock: **Use alternative sources**
 • Filter pressed tailings too wet: **Rework or add lime**

• TSF Performance
 • Erosion: **Gulleys, Sediment**
 • Foundation Deformation: **Slope deformation, Cover cracking**

• Human Factors
 • Management: **Money, Men, Materials**
Tolerability

• Natural Hazards
 • Slope deformation: No flowable tailings so just regrade deformed areas
 • Toe erosion: To exposure of tailings so just rebuild toe roads

• Mining Hazards
 • Use alternative sources: Added cost acceptable
 • Rework or add lime: Added cost tolerable

• TSF Performance
 • Erosion: Fill In Gulleys, Catch or Collect Sediment
 • Foundation Deformation: Repair Cover cracking

• Human Factors
 • Management: Robust Landform
Post-Closure Risks

• 1 to 100 Years
 • Landslides Block Channel
 • Big floods wash away access road, toe erosion
 • Big earthquakes induce TSF Deformation

• 101 to 1,000 Years
 • PMF
 • PME
 • Channel Infilling

• 1,000 Years Plus
 • Geomorphic Change
 • Climate Change
Risk Registers

- Area
- Component
- Hazard
- Consequence
- Mitigation
Conclusion

- Comprehensive Risk Assessment
- TSF Design to Mitigate Hazards and Consequences
- All Risk Considered Tolerable
- Regulators Accept
- Construction in Progress