Delft3D modeling of Sand Placement on an Oil Sands Treated Tailings Deposit

Monica Ansah-Sam, Canadian Natural Resources Limited
Ben Sheets & Jim Langseth, Barr Engineering and Environmental Science
Luca Sittoni & Jill Hanssen, Deltares
Outline

- Introduction and background
- Overview
- Modeling
 - Modeling approach
 - Assumptions
 - Results
- Summary
- Recommendations & path forward
Introduction and Background

- Centrifuge product is produced at Jackpine Mine (JPM) as part of Canadian Natural’s effort to reduce fluid fine tailings (FFT) inventory
- The centrifuge product has an average solids content of 45%, produced from fluid tailings (about 25% solids) dredged from a tailings pond at JPM
- The centrifuge product is currently being deposited at JPM DDA1
- Annual tailings investigations have been conducted since the start of operations in 2013 at JPM DDA1
Introduction and Background

- Understanding the feasibility of capping the centrifuge deposit at JPM DDA1 is a step towards reclamation activities and closure.

- The main goal of JPM DDA1 capping is to:
 - enhance consolidation (additional load, manage release water)
 - improve long and short term trafficability (access for additional capping, drain installation etc).

- To support the onset of reclamation activities for the DDA 1 centrifuge deposit, hydraulic sand placement was attempted to either:
 - cap the centrifuged FFT deposit or
 - potentially mix with the centrifuge deposit to allow future hydraulic sand cap placement.
Overview: Before 2016 Field Trial

- North Western corner of JPM DDA1 was identified as a good candidate to attempt hydraulic sand placement.

- Centrifuged deposit properties:
 - solids content = 40 – 50%
 - fines content > 90%

- Sampling and Testing:
 - pre-trial sampling and testing holes were available in this area.
Overview: After 2016 Field Trial

- Coarse sand tailings (CST) discharge:
 - Flow of: 7,700 m3/hr.
 - Duration of: ~7 hours
 - End of pipe energy dissipation device

- Field observations:
 - flow tended towards western wall
 - majority of sand ‘plunged’ rapidly

- Sampling and Testing:
 - post trial sampling in area of CST deposit/mixing
Overview: Post-trial Field Observations

General trends:

- **CST beach:**
 - low fines, high solids

- **Mixed:**
 - variable fines, solids

- **Centrifuged FFT deposit:**
 - high fines, intermediate solids

- Solids decrease away from source
- Fines increase away from source
Conventional modeling tools were considered not appropriate:

- Newtonian flow: sand transport proportional to velocity/turbulence
- Non-Newtonian flow: sand settling proportional to velocity/turbulence

conventional modeling approaches were considered not suited for tailings slurries

Delft3D-slurry flow model

- Research version of Delft3D software that incorporates non-Newtonian flow behaviour including segregation behaviour was used. This is:
 - a physics-based numerical model of hydrodynamic and sediment behaviour
 - designed for flows with finite/variable yield stress

a secondary-level objective: would this modeled behavior compare well to observed results?
Modeling: Important Assumptions

- Delft3D-slurry software is still under development. Main assumptions to note for the present study are:
 - two-dimensional simulations (vertical, longitudinal)
 - no CST beach formation
 - post-depositional processes are not simulated (consolidation, dewatering)
 - centrifuged FFT deposit & CST properties constant in space and time

- Model is not capable of exact reproduction of field observations
- Intended as general tool to investigate CST mixing phenomena
Modeling: Selected Simulations

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Description</th>
<th>CST bulk density [kg/m³]</th>
<th>CST solids content [%]</th>
<th>Centrifuge bulk density [kg/m³]</th>
<th>Centrifuge solids content [%]</th>
<th>Centrifuge Yield Stress (τy) [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QN1</td>
<td>Base case</td>
<td>1664</td>
<td>63</td>
<td>1400</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>QN1b</td>
<td>▼ CST solids</td>
<td>1520</td>
<td>54</td>
<td>1400</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>QN1c</td>
<td>▼ CST particle density</td>
<td>1400*</td>
<td>62</td>
<td>1400</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>QN2</td>
<td>▲ centrifuge τy, ▲ centrifuge τy, ▼ CST solids</td>
<td>1664</td>
<td>63</td>
<td>1400</td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>QN2b</td>
<td>▲ centrifuge τy, ▲ centrifuge τy, ▼ CST solids</td>
<td>1520</td>
<td>54</td>
<td>1400</td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>QN3</td>
<td>▲ centrifuge τy, ▲ centrifuge τy, ▲ centrifuge density</td>
<td>1664</td>
<td>63</td>
<td>1664</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>QN6</td>
<td>▲ ▲ centrifuge density</td>
<td>1664</td>
<td>63</td>
<td>1700</td>
<td>68</td>
<td>20</td>
</tr>
</tbody>
</table>

*Particle density = 1800 kg/m³

- **Constants:**
 - geometry (based on field x-section & 2015 field sampling)
 - CST discharge (7,700 m³/h) & trial duration (7 hours)
‘Wedge’ shaped mixing geometry:
- higher sand concentration near CST source

Centrifuge deposit yield stress controls sand distribution
- with weaker centrifuged deposit:
 • sand mixes for a farther distance
 • sand mixing zone is thinner
SFR illuminates some differences better than “sand content”

Sand concentration lower with weaker centrifuge deposit
- finite sand volume in 7 h trial
- with weaker centrifuge deposit, SFR < 1.1
- with stronger centrifuge deposit, SFR ~ 1.3
Modeling: Results of Reduced CST Sand Concentration

- Lower CST bulk density \rightarrow smaller wedge
 - smaller total volume of sand delivered in 7 hours
 - smaller density contrast between CST and centrifuge deposit
 - shorter sand mixing distance
 - thicker sand mixing zone
Modeling: Comparison with Field Observations

Baseline sand simulations show wedge-shaped mixing region. Simulation SFR too low. Simulations overpredict runout (2D vs. 3D; CST conc. too high?)
3 capping scenarios:

- equal CST/centrifuge deposit bulk density
 - mixing throughout deposit column
- CST bulk density < centrifuge deposit bulk density
 - cap-like behaviour—mixing depth depends on relative density
 - centrifuged deposit solids content > 65%
- reduced density CST particles
 - similar solids content, lighter particles (eg. coke)

bulk density contrast is the primary driver
Summary

- Preliminary results suggest modeling interactions of CST/centrifuge deposit is possible
 - qualitatively similar depositional patterns & mixing magnitudes
 - certain important processes for refinement need to be included in future modeling such as:
 - beach formation, water release/densification/consolidation, three dimensions

- Sand/centrifuged deposit mixing controlled by CST density and centrifuge deposit properties
 - weaker/less dense centrifuged FFT deposit → more extensive mixing & wider sand distribution
 - denser CST → concentration of sand towards bottom of pond

- Capping may be considered under these conditions:
 - centrifuged FFT deposit solids content > 65% – assuming CST remains unchanged
 - capping may be possible with less dense CST (solids content or granular density)

 Considerations such as CST thickness limitations or how far such a cap may extend were not explored
Recommendations & Path Forward

- Modeling approach could be used to optimize mixing and/or capping
 - requires better characterization of both CST and centrifuge deposit
 - is CST density at shoreline same as in the pipe?
 - should centrifuge deposit spatial variability be included?
 - are there constraints on sand cap deployment approach?

- Additional validation of model performance needed
 - laboratory work would be valuable
 - what is the role of densification/dewatering during mixing?
 - how is mixing controlled by CST & centrifuge deposit density?

- Model development needed
 - important processes such as beach formation & post-depositional dewatering
Thank you for listening

- Acknowledgements:
 - Scott Martens, Adam Thompson and Karsten Rudolph, Canadian Natural;
 - Arno Talmon and Bas van Maren, Deltares; and
 - Ben Borree, Barr Engineering and Environmental Science Canada Ltd.

- Feel free to contact us with questions:

 bsheets@barr.com

 monica.ansah-sam@cnrl.com